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Abstract

We analyze the crystallization process of mixtures of long and short oligomers such as n-alkanes using a Sadler—Gilmer-type growth
algorithm. The short chains are assumed to crystallize only in a fully stretched conformation, while the long chains take a pathway over a
folded state. Increasing the concentration of long chains from zero to unity, the zero-growth temperature, which separates the stable growing
phase from the non-growing phase, first decreases for low concentrations of long chains, reaching a minimum value at intermediate
concentrations, and increases again for higher concentrations, as a result a growth-gap appears. Here, mixing long chains into the short
chain liquid stops the growth process completely until it resumes at higher concentrations of long chains. This effect is explained by the
particular kinetic pathway, the long chains take into the crystalline state. Since the folded state has to be passed at first, long chains are more
likely to be desorbed again. At low concentrations, the long chains thus effectively dilute the short chain liquid leading to a decrease of the
zero-growth temperature. At higher concentrations, the transition into the stretched state of the long chains leads more frequently to bonded
pairs, which stabilizes the growth again due to the higher binding energy among fully stretched long chains. © 2001 Elsevier Science Ltd. All

rights reserved.
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1. Introduction

Polymer chains crystallize in form of lamellae which are
usually much thinner compared to the length of the fully
stretched individual chains [1]. The description of polymer
crystallization from a theoretical point of view is a formid-
able task since the resulting polymer lamellae are generally
out of equilibrium structures and therefore the standard
methods of equilibrium thermodynamics and statistical
mechanics can a priori not be applied. For conventional
polymers, various effects such as polydispersity and
entanglements can influence the crystallization process
and hence the resulting morphology. Furthermore, long
polymer chains usually fold many times in the crystal
state implying possible configurational disorders, such as
loops, cilia, bridges between different lamellae, and the
formation of rather rough and disordered folding surfaces.
Therefore, the most simple system which can provide
understanding of the process of polymer crystallization is
given by relatively short, exactly mono-disperse oligomers
such as n-alkanes [2—4]. If the chains are shorter than
typically 15 nm, only the fully stretched state S has been
observed in experiments, while long oligomers appear also

in a folded state F [5]. For simplicity, we will consider here
long oligomers, which can fold only once.

Before we start to describe the model at hand, it is in order
to point out some general aspects regarding the simulation
of polymer crystallization processes. The typical growth
rate of a few wm/s indicates that the molecular organization
process is very slow. Assuming a few A for the typical
dimension of a crystalline cell, one obtains a time scale of
107*s to build up one crystalline stem, i.e. to add one
elementary cell to the growth front. Let us further assume
a typical time unit of 10" s which characterizes the motion
of monomers in the liquid state on the scale of the crystal
cell. Hence, 10° time units are necessary just for one
elementary step in the growth process. This illustrates that
the rearrangements of the polymer conformations at the
growth front are a longsome process, which involves
many trial events together with interactions among the
chains at the growth front. Therefore, first-principle simula-
tions will face serious difficulties in modeling the process of
polymer crystallization. On the other hand, experiments on
short chains reveal only a few discrete values for the lamel-
lar thickness. This indicates that the individual chains also
obtain only a few rather well defined states in the crystalline
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structure, usually denoted as regularly folded states.
Respecting the fact that only the fully extended state of
the chains corresponds to the thermodynamic equilibrium
of the crystal, we denote the folded chain states generally as
intermediate states in a thermodynamic sense. These
intermediate states form an extremely small subset in the
statistical phase space of chain conformations.

Now, the idea is appealing to establish a kinetic model
which takes into account these few intermediate states only
[5]. Though the kinetic pathways in between these states are
formed by time-consuming and quite complex chain re-
arrangements, the latter enter the model only via their
characteristic time-scales expressed by corresponding
transition rates. The transition rates themselves, which we
call kinetic parameters here, cannot be calculated directly
but are adjustable values of the model. In previous work, we
have developed a simulation model along this lines, which is
able to describe the crystallization process in thin polymer
films [6]. Here, many different morphological phase could
be predicted and experimentally verified [7,8]. The aim of
this paper is to simplify the model once again to understand
the essential processes during crystallization of short
oligomers.

2. Simulation model

A modified variant of the Sadler—Gilmer (SG) model is
used [9-11]. Here, lateral correlations along with the
growth front of the crystal are neglected and a cut through
the growing crystal in the direction perpendicular to the
front represents a one-dimensional growth model. The
different folded states of an individual chain are considered
as internal variables, which correspond directly to the thick-
ness of the crystal. For a more recent reconsideration of this
model, see Ref. [12]. In the present case, we have to
consider two types of chains: short chains, which can only
crystallize in the stretched state S, and long chains, which
can adopt a once-folded state F. This requires some modi-
fications of the original model as described in the following.

2.1. Simple growth law for short chains, which can only be
in the stretched state

Since the short chains crystallize only in the fully
stretched state, one obtains a simple and completely
solvable growth kinetics. In order to join the crystal, a
chain of length Ny from the liquid phase must overcome
some ‘entropic’ barrier s, involving stretching of the confor-
mation in the first place but also the loss of translational
entropy. Therefore, the probability for a new chain to
enter the crystal is given by

Pentr = e . D

Note that the exponential representation of p.,, does not
indicate an equilibrium nature of s, but is only made for
convenience. For the sake of simplicity, we set the time

constant for an attempt to enter the crystal to unity. Further-
more, we choose k = 1 for the unit of entropy. In order to
remove a chain at the growth front, a corresponding binding
energy €p,¢ among the crystallized units must be
surmounted. The probability for outgoing events is thus

Pou = € @7 )

As a combined effect of entropic and energetic barriers one
obtains for the steady state growth rate

_ .S —€pina/T+s
G_pentr ~ Pour = € (1 —¢ ™ )

—e %1 — e—ebmdAT/TTg), 3)

where we made use of G(Tg ) = 0, defining the zero-growth
temperature Tg, and the under-cooling AT = Tg —-T.

2.2. Two state model for longer chains

For the long species, a new situation occurs since an once
folded state F has to be considered in addition to the fully
stretched state S. Here, we restrict ourselves to the case of
long chains which are twice as long as the short ones, i.e.
Ni. = 2Ns. The basic assumption is that a new chain enters
the crystal always in the folded state. This is in accordance
to the original idea of Sadler and Gilmer (SG) [11] but
simplified to the case that only one intermediate state F is
considered. Note that in the original SG-model, the
segments of a chain are treated completely independent;
chain connectivity is only reflected by a pinning effect. By
contrast, in the situation at hand, this picture must be
modified in order to distinguish properly between long
and short chains. A long chain in the folded state fills two
places at the growth front. In order to stick to the simplest
one-dimensional growth model, we apply the view of a
virtual lateral neighbor at the growth front. In the folded
conformation, this corresponds to the second stem while
in a stretched conformation it represents an independent
chain. Hence, in the folded conformation, we split our
long chain into two stems and treat them formally indepen-
dent. To stretch out a long chain one of the stems must leave
the original state at the growth front and put itself on top of
the other part. The introduction of a virtual lateral neighbor
is important to obtain a realistic fluctuation dynamics: if we
would have treated the folded chain as one unit, adding and
removing it means to change two units of the growth front at
once per step. Now, we regularly check the virtual neighbor
place, as it would be an ordinary part of the simulation
lattice. If a chain is in the folded state, the action of the
virtual neighbor may cause stretching, while for stretched
chains, the event at this site does not change the state of the
crystal row.

In analogy to the short chains, an entropic barrier for each
stem must be surmounted when a chain changes from the
liquid to the crystalline state. To keep the model as simple as
possible, here also we use the rate p., as for the short, half
as long chains. (This makes sense if stretching of the chain
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Fig. 1. Diagram of transitions between states formed by pairs of long chains
at the growth front. (a) Growth events: only folded configurations are
created in the growth step. The Metropolis weight T is independent of
the state before the transition. (b) Stretching events: stretching can only
occur out of folded states. The weight includes removal of a folded stem
€vind — ISk as well as additional stretching T's. (c) Removal of folded chains:
the weight is given by €y;,¢ — Tsp. (d) Removal of a stretched chain: here the
weight depends on the state of the chain next to the front. For a pair of
stretched chains, the weight is 2e. Otherwise a cilia is removed with a
Weight of €hind — Tscilia-

part is rate determining since both the short chain and a
single stem of the folded chain have the same stretching
length.) Now three possibilities emerge for the next step
in the process. For simplicity, we consider only long chains.

First, the stem can be removed again. This occurs with a
probability of

F — €ping/T+s
pou[ =e bind F, (4)

where an effort for folding T'sg has to be introduced which
reduces the effective binding of the single stem compared to
the unfolded short chain.

Second, a stem of a new chain from the liquid can enter.
This freezes in the folded conformation behind the front. (It
can only be released again by backward moves of the front.)

Third, the chain can stretch by moving over the other
stem from the virtual lateral neighbor. The corresponding
probability is given by
P = PouPent- (5)
Here, we assume that the second stem has to be removed
(ph,) and, additionally, it has to be put on top of the crystal
surmounting again the entropic barrier pe,. A critical
discussion of other possibilities are given in Section 4.

As a result of the stretching process, one obtains either a
dangling end (cilia), which we call S_-state, or, if also the
chain directly behind the front is a long chain in the

stretched state, a locally fully extended chain crystal,
which we call S, -state. This is illustrated in Fig. 1a). For
removing a long chain out of an S-state, two cases have to be
distinguished: if we deal with a cilia (S_-state) the unbind-
ing probability is given by

Powt = Pout€™™, (6)

where s.;, is the entropy effort of confinement for a cilia
being grafted to the hard impenetrable crystal surface. It is
easier to remove a chain with a cilia part compared to a
small chain. A fully stretched crystallized chain (S -state)
is removed with a probability

Dot = Do)’ (7)

indicating that now both half-chains are bounded, i.e. the
doubled energy of binding is acting per site.

In case of a mixture, a new incoming chain is identified as
a long chain with a probability of p. Otherwise, a short chain
is assumed. Within the algorithm described earlier, only the
stretching event does not exist for short chains. Hence, a
transition to S_- or S_-states is then impossible for a crystal
site occupied by a short chain. Memory effects can be
included into the probability p: The long chain displays
some kind of memory of the crystalline conformation
when being desorbed. This effectively increases the
probability p to re-crystallize this chain again. We always
consider p as the effective concentration of long chains
directly at the growth front which can also incorporate
selection effects due to adsorption.

Now, if the long chain is in an S-state, the rates for the
outgoing events depend on state of the nearest stem behind
it. If this stem is also in the S-state, Eq. (7) is applied, if it is
a stem of an F-state or is a short chain, Eq. (6) must be
applied. Therefore, for every step in the growth algorithm,
the state of the first pair of chains at the growth front is of
relevance. This is illustrated in Fig. 1 for long chains only.
In order to simplify the picture for the F-state, the whole
chain is sketched. In Fig. 1, the possible pathways between
pairs of chains at the growth front are indicated. One might
think of an analytic solution for the steady-state transition
rates for all the four states. Unfortunately, such an endeavor
is facing the difficulty as for some steps, more than one
possibility exists depending on the actual distribution of
states behind the front. Fluctuations of the front position
can be considered. Hence, a possible self-consistent mean-
field-like assumption about the distribution of S- and F-
states hardly matches the actual problem. Therefore, we
apply a Monte Carlo method.

To implement the algorithm a ‘three point model’ is used
as illustrated in Fig. 2. This means that for each Monte Carlo
step (MCS), one of the three possibilities is chosen by
chance: (1) a new stem from the liquid phase tries to attach;
(2) the front stem tries to remove; (3) a stem from a lateral
neighbor moves over which results are stretching events if
the stem belongs to long chain. It is important to note that
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Fig. 2. Schematic view from the top onto the growing crystal illustrating the
‘three-point” model. The SG-model corresponds to a 1D-slice through the
crystal resulting in a 1D-growth process. Since a folded chain can stretch,
we use a virtual lateral neighbor site which can supply the other part of the
chain.

the third possibility is tried without checking first whether
the front chain is folded. If this is not the case, the trial is
rejected and no change of states occurs in this MCS. In each
MCS, one of the three possibilities is chosen at random
which mimics a fluctuation/diffusion-controlled dynamics.
It has to be emphasized that though the placement of a fold
in the lateral direction might be the preferred point of view,
this model only serves as an illustration for the equal
distribution of the events within an MCS. One might as
well think of the other fold to be on in front of the stem
under consideration.

2.3. Choice of model parameters

In addition to the concentration of long chains p (which is
equal to the probability to find a long chain before the
growth front), four parameters have to be considered. We
use the freedom to fix the absolute scale of energy by setting
the zero-growth temperature of the short chains to some
arbitrary but experimentally reasonable value of TS =
350. The entropy restriction for a cilia (S--state), Scija,
Eq. (6) corresponds to the confinement of the cilia in one
half-space (top or bottom of the lamella) and is of the order
of unity (note k = 1). In fact it is less, since at the growth
front, the cilia has the freedom to fluctuate also into the
region before the front (3/4 space is available). We set
this value to s.j;, = 1/2. Note that s.;, only affects the
events of desorption of S_-states, see Fig. 1. On the other
hand, the pathway to obtain S_ proceed via desorption of a
folded chain part from the growth front. The penalty for this
event is much higher for every physically reasonable
situation (i.e. €ppg > Tg‘), so that the effect of entropy
gain by freeing a cilia chain is comparatively small. The
predictions made with our model are also valid for s.;;, = 0.

Two parameters effectively control the dynamical
behavior: the binding energy €y;,q per stem and the folding
effort sz. We choose, ebind/Tg = 3.0, for practical reasons in
view of the computational time. A value of 3kT per stem in
the region around Tg is still certainly rather low but should
not be too far away from the experimental situation. The

Table 1
Fixed parameters in the simulations

Parameter Value
TS 350

&ind/To 3.0
SE 0.1
Scilia 05

folding effort sg is constrained to ensure that the zero-growth
temperature T& of long chains only must be higher than 73:
the long chains can grow in temperatures where short chains
are not able to crystallize anymore. This implies also a
higher melting point for the long chains, as observed experi-
mentally. From this requirement, our model yields the
condition sg < 0.64 (for the already discussed parameters
€ping and Tg ; again s, only plays a minor role). We have
first chosen sz = 0.1 and discuss other possibilities later. In
Table 1, we display all the fixed values of the parameters for
most of the results presented.

With these assumptions, the variables of the simulation
model are the temperature 7 and the concentration of long
chains p.

3. Results

The dependence of the growth rate G from the concentra-
tion of long chains p is displayed in Fig. 3 for different
values of the temperature. We observe a non-monotonous
behavior. Adding a small amount of long chains into short
chains decreases the growth rate. The same is observed for
the inverted situation. This agrees with experimental results
obtained by Hosier et al. [13] for n-alkanes, although the ratio
of the chain lengths used in these experiments is not 2:1.

When the temperature increases, but still below Tg ,
growth stops completely above a threshold value of p(T')
but restarts again for a higher value p)(T). Hence, we
observe a growth-gap as a function of concentration of
long chains. Above T3, the growth is not possible for
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Fig. 3. The growth rate G is plotted vs. concentration of long chains p for
different values of the temperature.
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Fig. 4. Kinetic phase diagram in the p,7-parameter space. Two kinetic
phases are distinguished: stable growth and zero-growth. These phases
are separated by the zero-growth temperature Ty(p) thus representing a
phase boundary. Close to the boundary, the fluctuations of the front position
vs. time are extremely large, see Fig. 5.

short chains only (p = 0). However, growth starts at higher
concentrations for long chains. The zero-growth tempera-
ture for long chains Ty = Ty(p = 1) is located at Ty = 360.
This value strongly depends on sg. As noted, for sp = 0.64,
we obtain the limiting case of T(% = Tg .

From these data, we can construct a growth phase
diagram as presented in Fig. 4. We distinguish two kinetic
phases namely stable growth and zero-growth. In the zero-
growth phase, the front always retreats back to the origin.
Nevertheless, long excursions of the front can occur, but
will never end up in a stable growth. In Fig. 5, we give an
example of the evolution of the front position close to the
phase boundary at p = 0.5. The zero-growth temperature
here is T, = 347.15. As can be seen in Fig. 5, stable growth
is found at T = 347, while zero-growth is obtained for 7 =
347.3. Note that a resolution of about 0.0003 in relative
temperature units has been obtained.

The growth phase diagram in Fig. 4 shows a curved phase
boundary. Most noticeable is the minimum at about p = 0.4
which corresponds to a temperature

T, =347.12 < T}. (®)

5000

o8 T=347.00 (-0.15)
O—O T =347.30 (+0.15)

4000

3000

2000

1000

Front Position in Lattice Units

Fig. 5. Front position vs. time for two temperatures close to the phase
boundary at p = 0.5.

Hence, a growth-gap as a function of concentration p is
found in the temperature range

T, <T<T;. ©)

Does such a behavior depend gualitatively on the value of sg
relative to ebind/Tg? To answer this question, we have
plotted the zero-growth line as a function of sg for different
values of p in Fig. 6. As expected, increasing the folding
penalty sk decreases the zero-growth temperature T(])‘ for a
liquid of long chains only (p = 1). For sp = 0.64, the
limiting value Ty =Typ=1= Tg =350 is reached.
Increasing s gives a remarkable lowering of T at inter-
mediate values of the composition, such as for p = 0.4.
As a result, the growth-gap is enforced. On the other
hand, for small values of sg, the minimum shifts towards
p = 0. Eventually, for s = 0, the minimum vanishes. This
is because here the folded chains do not have a disadvantage
along their kinetic pathway compared to the short chains.
We conclude that the existence of a growth gap does not
depend on the parameters chosen but it is a rather general
feature of the kinetic pathway proposed for long chains.

4. Discussion

The simulations have shown that a mixture of short and
long chains, treated here in the simplest way (long chains
twice as long as short ones, short chains do not fold) yield a
non-monotonous behavior for the growth rate as a function
of composition p. The growth rate can even become zero at
intermediate values of p — a growth-gap is predicted.
Now, the reason for such a behavior can be understood
on the basis of the kinetic pathways assumed for the long
chains.

As a general, preliminary remark we note that lowering
the concentration of the polymer liquid at the growth front
results in the drop of the zero-growth temperature for the
crystallization/growth process. This can be easily under-
stood using a kinetic argument: the rate of successful

2360 long chains only

350

340

Zero—Growth Temperature

330 L . .
02 0.4 0.6
Folding Effort s

Fig. 6. Zero-growth temperature 7; as a function of s for different values
of p.



934 J.-U. Sommer / Polymer 43 (2002) 929-935

attempts to remove a chain at the front compared to an
incoming event is enhanced since the probability of
incoming events is reduced.

Let us consider first the limiting cases, where p is either
close to zero or close to unity, i.e. one species clearly domi-
nates. The minority species is then not able to form an own
growth phase. This has striking consequences if long chains
form the minority (p < 1). Now, the stretching step is
practically useless since the probability for long chains to
form pairs in the stretched state (see Fig. 1 upper right side)
is negligible. Therefore, long chains act as defects, either in
the folded state, where they are more easily removed, or in
the stretched state, where they are almost always isolated,
thus forming cilia which also have a higher rate of removal.
As a consequence, the growth rate decreases. Since the long
chains effectively dilute the short chain liquid for p <1,
according to our argument above the zero-growth tempera-
ture is reduced too.

To(p < 1) <T;. (10)

Consider now the opposite situation, where short chains
form the minority (1 —p <1). Since Ty = Ty(p = 1) >
Tg, the short chains are a priori in an unstable situation if
attached to the crystal. Again, they act as defects and
effectively dilute the long chain liquid. In turn, the zero-
growth temperature of long chains is reduced

Top—1<1)<Tp. (11)

As a consequence of the opposing trends in the slope of the
zero-growth line Ty(p), the latter must display a minimum
T,, see Fig. 4. Experimental evidence for the limiting
relations (10) and (11) can be found in the paper of Hosier
et al. [13] (see in particular Fig. 2c therein).

From Eq. (10), we obtain that a small amount of long
chains added to short chains stops growth if we are close

.

Y

Fig. 7. Sketch of the relation between the characteristic length scales
involved in the polymer crystallization process. In the liquid melt state,
the extension of a chain is characterized by the average end-to-end distance
R = N"? in statistical monomer units. In the crystal phase, depending on
the state of folding, it is given by L = N and L/2, respectively. Here we set
[ =1 for the statistical segment length.

to 7. However, increasing the concentration of long chains
stable growth must set in again. We immediately see this for
p— 1. This is because for higher concentrations of long
chains, the extension step is becoming successful in creating
pairs of stretched chains at the growth front. To conclude we
obtain a growth gap at intermediate concentrations as a
consequence of the kinetic folding pathway for the physi-
cally reasonable assumptions sg > 0 and T(I)‘ > Tg.

Now, let us discuss critically which other possibilities
may be considered for the kinetic pathway of the long
chains. Sticking with the assumption that only two crystal-
line states exist, we might assume that long chains can enter
the crystal directly with a cilia instead of being folded. Even
then, slowing down of the growth rate for p — 0 is still
expected because of s;,. The entropic effort for the cilia
which enhances the rejection rate of an unpaired cilia-state
S_ would now be responsible for this effect. However, there
is a geometric argument against this scenario. In Fig. 7, we
have sketched the characteristic ratio between the chain coil
in the melt represented by the end-to-end distance R and the
thickness L of an extended chain crystal. Here we assume a
short chain only made of 50 Kuhn’s segments of length /.
For the melt chain, we have

R=IJN. (12)

Therefore, we get for the ratio L/R

L_Ww 13
RN (13)
From this, we see that even in our example, the ratio L/R is
large. Therefore, the probability for a free long chain to join
the growth front in the already stretched conformation is
extremely low. On the contrary, one should think that the
melt chain enters the crystal via a more complex pathway
incorporating an adsorbed state and several steps towards a
more extended conformation.

At this point, we can formulate an essential property
responsible for the growth gap in bimodal mixtures of
oligomers: The long chains have to pass through a kinetic
pathway where the first step(s) must represent a weaker state
compared to the crystalline state of the short species. An
indication for this behavior would be the fact that the
effective melting temperature of the folded crystal of long
chains is below that of the short chain crystal.

Note that it is not necessary to have the ratio 2:1 between
both chain lengths. The latter has been taken only for conve-
nience in the simulations.

Let us finally discuss some general features of the SG-
model. First, the model is essentially one-dimensional
(representing a cut through the lamellae) assuming that
lateral correlations are not important. As an extreme case,
it should be contrasted to the Lauritzen—Hoffmann (LH)
model [14] which is based on the effect of lateral correla-
tions at the growth front. Moreover, the structure of the
crystal is controlled only through the growth front (which
is also true for the LH-model). Reorganization of chains
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Fig. 8. The number of stretched conformations as a function of temperature
for long chains only (p = 1). Even at the zero-growth temperature, o' =
360, half of the chains are still in the folded conformation, though the ratio
of unbounded cilia (S-) to bounded cilia (S.) decreases to about 20%.

behind the front can only take place if the front retreats
which becomes more and more unlikely with time for a
given chain since the growth front moves ahead with an
average velocity, see Fig. 5. Hence, reorganization is
practically suppressed within the crystal. The correlation
length for front controlled reorganization processes (it is
better to call them reformation processes) is given by the
fluctuations of the front position around its mean as a
function of time. Therefore, interactions can only propagate
a finite distance. This is best illustrated in Fig. 8, where the
number of cilia and bonds between cilia, i.e. locally
stretched chain crystals, are plotted for a large temperature
interval in the case p = 1. As can be seen, there is no sharp
step from the F to the S form. The number of cilia and
bounded pairs gradually increases and in particular, the
value of unity, i.e. a pure S state is never reached. This is
clearly a consequence of the one-dimensional system and
the missing reorganization within the crystal. Note also that
correlation effects (as long as the correlations have a finite
range) as discussed earlier cannot, by statistical reasons,
change this observation in a qualitative manner. To obtain
a rather sharp transition between F and S states of the
crystal, internal reorganization processes behind the growth
front together with the real two-dimensional character of the
crystal are necessarily to be considered [8].

The SG-model cannot explain melting behavior, but only
growth. Increasing the temperature causes just a step in the

thickness of the lamella. This is due to the fact that the liquid
phase is not simulated. As a purely kinetic model, it can
show only growth or zero-growth but no equilibrium or
meta-stable equilibrium between crystal and liquid. Note
that the zero-growth temperature discussed in this work is
nevertheless an excellent experimental feature and differ
from the melting temperature. In particular, there exists
only one zero-growth temperature for a given chain length.
However, most interesting is the result of the front-
controlled growth model that growth stops before the
extended form of the crystal is reached. Hence, one is
inclined to conclude that the zero-growth temperature can
become independent of chain length for long chains.

In view of the physical interpretations from our model
analysis, it would be extremely interesting to test the
growth-gap hypothesis in experiments with n-alkanes.
Such experiments could be decisive with respect to the
question which folding pathway is taken by long chains
and whether a front controlled growth model can reflect
this feature properly.
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